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Summary

An equation for the reverberation time is derived for the nor-
mal modes in a rectangular room with different absorption co-
efficients assigned to the six surfaces. The method is based on
the fact that the standing wave of an oblique mode can be split
into eight plane sound waves travelling in welldefined directions.
Thus, the concept of mean free path can be applied in connec-
tion with a normal room mode. Averaging the mean free path of
a very large number of room modes leads to an asymptotic result
that equals the mean free path known in statistical room acoustics
for 2D and 3D diffuse sound fields.

1. Introduction

The solution to the wave equation in a rectangular room has been
known since Lord Rayleigh’s “The Theory of Sound” was pub-
lished in 1877 [1, § 267], and it is found in almost every textbook
on acoustics. Still, it is hard to find information in the literature
about the reverberation time or the damping constant of the nor-
mal modes. An approximate solution is found in [2, eq. (9.5.24)],
but that includes a dubious model that gives attenuation to a plane
wave from a surface parallel with the direction of propagation.
Actually, this author is not aware of any reference that presents a
proper solution to the problem. The aim of this paper is to show
how a solution can be derived by using the fact, that the standing
wave in a rectangular room can be considered the result of up to
eight plane waves propagating in well-defined directions.

2. Directions of sound propagation

A rectangular room with dimensions lx, ly , lz is considered. As-
suming rigid surfaces, i.e. reflections without phase delay, the
solution to the wave equation can be written [3, eq. (III.18)],
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Here A is a constant, (nx, ny, nz) are the modal numbers, and ω is
the angular frequency. The summation is taken over all eight pos-
sible combinations of the + and − signs. The natural frequency
of the mode is given by
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where c is the speed of sound. Equation (1) shows that the solu-
tion is a standing wave, but also that this can be interpreted as the
interference between eight plane waves travelling in different di-
rections. The wave number of the propagation along the x-axis is

Received 12 November 2015,
accepted 01 March 2016.

Figure 1. Two examples of tangential modes; (1, 2, 0) left and
(3, 1, 0) right. Upper graphs: nodal lines, middle graphs: wave
fronts in two positions with a short time delay. Lower graphs:
directions of propagation, perpendicular to the wave fronts.

kx = πnx/lx. The direction of propagation expressed as an angle
relative to the x-axis is
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and analogue for the y-and z-directions,
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, (3b)
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If one modal number is zero, e.g. nz = 0, the angle ϕz = 90◦, and
the sound propagation is perpendicular to the z-axis (a tangential
mode). If two modal numbers are zero, e.g. ny = nz = 0, the
sound propagation is parallel with the x-axis (an axial mode).

Two examples of tangential modes in a rectangular room are
visualised in Figure 1. The nodal lines (actually vertical planes)
represents the standing wave pattern, whereas the corresponding
wave fronts represent the plane waves travelling in four different
directions. The normal distance between parallel wave fronts is
the wave length λ = c/f . The lower part of Figure 1 shows the
four possible directions of propagation, which are perpendicular
to the wave fronts. The direction of propagation and the direc-
tional cosines in equations (3) are displayed in Figure 2 in the
case of an oblique mode.

3. Number of reflections and the mean free path

Being a rectangular room, it is convenient to consider sound re-
flections as a sound ray that continues as a straight line into the
infinite surrounding of image rooms. The next step is to find how
often each of the six surfaces of the room is active in the series
of reflections, when one of the directions of propagation is fol-
lowed. Any of the eight directions can be chosen, the result will
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Figure 2. The direction of propagation and the directional cosines
of an oblique mode.

be the same. If the total length of the ray is l0, the number of re-
flections qx in the x-direction is found by dividing the projection
of l0 on the x-axis by the room dimension lx,

qx =
l0
lx

cosϕx =
l0nxc

2l2xfn

, (4)

and analogue for the y- and z-directions. The mean free path is
then found as the total length l0 divided by the total number of
reflections,
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4. Modal reverberation time

The sound absorption coefficients of the six surfaces are denoted
αx1, αx2, αy1, αy2, αz1 and αz2. In fact, absorption coefficients that
are not zero violate the presumption of rigid surfaces. Instead,
angle independent absorption coefficients with zero phase angle
are assumed. These assumptions are similar to those of geomet-
rical acoustics and are the same as those required for specular
angleindependent ray tracing, see [4]. As in geometrical acous-
tics, it is believed that they do not introduce serious problems
into the result.

The reverberation time of the room modes can now be calcu-
lated in the same way as used in [5]. Following a representative
wave in one of the directions introduced above, the two walls per-
pendicular to the x-axis are met qx times, i.e. each wall provides
a reflection qx/2 times. A similar observation is made for the y-
and z-directions.

The energy of the mode after allN = qx + qy + qz reflections
along the length l0 of the representative wave is

EN,n = E0 1 − αx1 1 − αx2
qx/2 1 − αy1 1 − αy2

qy/2
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. (6)

The length of propagation is l0 = ct, where t is the time. By
definition the reverberation time is the time, when the energy is
reduced to EN,n = 10−6E0. After insertion of (4) and the ana-
logue expressions for qy and qz, the reverberation time Tn of a

specific room mode (nx, ny, nz) is found as
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If we define the area of the surfaces as Sx = lylz, Sy = lxlz,
Sz = lxly and multiply the divident and divisor in (8) with the
volume V = lxlylz, the modal reverberation time can be written
as
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It is noted that the contribution of the absorption coefficient of
a surface is not only proportional to the area of the respective
surface, but also proportional to the index numbers of the mode
and inversely proportional to the distance between the pair of
parallel surfaces. This is a result, which is very different from the
absorption of a surface in statistical room acoustics, and may be
unique to the modal reverberation time.

This finding can be compared to the classical Eyring equation
based on statistical room acoustics. Then we assume all absorp-
tion coefficients to be equal to the mean absorption coefficient αm
and from (8) we get the modal reverberation time,
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where lm is the mean free path, as found above (5). In the statis-
tical room acoustics the mean free path in a 3D diffuse field is
known to be lm = 4V/S, where S is the total surface area [6].
This is independent on room shape, but an equal distribution of
all directions of propagation is an important assumption.

When the statistical mean free path is inserted in (10) we get
Eyring’s equation,

Tn =
55.3 · V

−cS ln(1 − αm)
. (11)

So, the modal reverberation time derived above is in agreement
with the statistical Eyring equation if the modal mean free path
equals 4V/S for a sufficient high density of room modes.

For comparison of the statistical mean free path to the modal
mean free path, a few examples of edge ratios are chosen for rect-
angular rooms, ranging from a cubic room (1:1:1) to a very long
room (8:1:1) or a very flat room (8:8:1), see Table I. The modal
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Table I. The mean free path for 3D sound fields, calculated for some examples of room edge ratios.

Edge ratio

lx 1 1.6 4 8 8 8 8
ly 1 1.25 2 1 2 4 8
lz 1 1 1 1 1 1 1

V 1 2 8 8 16 32 64
S 6 9.7 28 34 52 88 160

lm (stat) 0.667 0.825 1.143 0.941 1.231 1.455 1.600

lm (728 modes) 0.678 0.829 1.081 0.887 1.142 1.369 1.612
lm ratio 1.017 1.005 0.946 0.942 0.928 0.941 1.007

lm (511 modes) 0.680 0.822 1.051 0.881 1.108 1.300 1.503
lm ratio 1.020 0.997 0.920 0.936 0.900 0.894 0.939

Table II. The mean free path for 2D sound fields, calculated for some examples of room edge ratios.

Edge ratio

lx 1 1.25 1.6 2 3 4 8
ly 1 1 1 1 1 1 1
S 1 1.25 1.6 2 3 4 8
U 4 4.5 5.2 6 8 10 18

lm (stat) 0.785 0.873 0.967 1.047 1.178 1.257 1.396

lm (80 modes) 0.807 0.895 0.986 1.064 1.201 1.310 1.708
lm ratio 1.027 1.025 1.021 1.016 1.020 1.042 1.223

mean free path is calculated from (5) by averaging the result for
all possible combinations of room modes from (1,0,0) to (8,8,8),
i.e. the first 728 modes. It is emphasised that axial and tangen-
tial modes are included. If the averaging had been restricted to
oblique modes only, the modal mean free path would be shorter.
However, when all modes are included, the agreement with the
statistical model is good for the examined edge ratios. The per-
fect agreement should give a ratio of unity. The maximum de-
viation between modal and statistical mean free path shown in
Table I is about 7% (the lm ratio 0.928), which is for the edge
ratio (8:2:1). The reason for the deviations is the limited num-
ber of modes included in the averaging; increasing the number
of modes would reduce the deviations. To prove this, the calcula-
tion has been repeated with all room modes up to (7,7,7), i.e. the
first 511 modes, and as expected the agreement with the statisti-
cal mean free path is slightly worse when less room modes are
used.

In statistical room acoustics we also have the mean free path
in a diffuse 2D field; lm = πS/U , where S = lxly is the surface
area and U = 2(lx + ly) is the perimeter [5]. Again we can do
a comparison to the average modal mean free path by looking at
a number of edge ratios and averaging the result for all possible
combinations of room modes from (1,0) to (8,8), i.e. the first 80
modes. As seen in Table II the agreement is quite satisfactory,
even with this very limited number of modes.

5. Discussion
A simplified model for the modal energy in a rectangular room
was presented recently [5]. In that paper the author suggested a
simplified method to estimate the energy and reverberation time
of each single mode. The method, which was based on intuition,
suggested that the energy afterN = 2(nx + ny + nz) reflections is

EN,n = E0 1 − αx1 1 − αx2
nx 1 − αy1 1 − αy2

ny

· 1 − αz1 1 − αz2
nz
. (12)

So, according to the simplified method the absorption of the sur-
faces is weighted by the modal numbers, only. This is in contrast
to the model as derived above, in which the room dimensions
also contribute to the weighting.

The reverberation time of a specific room mode (nx, ny, nz)
according to the simplified theory [5] is
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13.8 · 2 (lxnx)2 + (lyny)2 + (lznz)2

−c ln [(1 − αx1)(1 − αx2)]nx

·[(1 − αy1)(1 − αy2)]ny
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. (13)

In the special case of a cubic room (lx = ly = lz) the equations
(8) and (13) yield the same result; but in general the simplified
theory will give too long reverberation times for the tangential
and oblique modes. The reverberation time of the axial modes is
always correct with both models.

As an example for comparison of the models we look at
the same room as in [5] with dimensions (lx, ly, lz) = (4.32m,
3.38m, 2.70m) and absorption coefficients (αx1, αx2, αy1, αy2,
αz1, αz2) = (0.05, 0.05, 0.10, 0.10, 0.15, 0.80). The reverbera-
tion times calculated with the simplified model and the new (ex-
act) model are shown in Table III for the first 14 modes. There
is no difference for axial modes, but some of the tangential and
oblique modes have shorter reverberation time according to the
exact model. However, the practical consequences are very lim-
ited, because in a 1/3 octave frequency band the decay will nor-
mally be dominated by the axial modes.

A comparison of the two models in terms of direction of prop-
agation is given in Table IV. The angles are calculated for the
first tangential modes in a room with edge ratio 1 : 1.5. This edge
ratio is also used in Figure 1, and we see that the angle relative to
the x-axis is 72◦ for the (1, 2, 0) mode and 27◦ for the (3, 1, 0)
mode. In contrast, the simplified model suggested 53◦ and 13◦ ,
respectively.
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Table III. The first 14 modes and their reverberation times calcu-
lated with the simplified (Tns) and the exact (Tne) model in the
example room. The underlined values deviate from the exact val-
ues.

nx ny nz fn [Hz] Tns [s] Tne [s]

1 0 0 39.7 3.4 3.4
0 1 0 50.8 1.3 1.3
0 0 1 63.6 0.1 0.1
1 1 0 64.5 1.4 1.3
1 0 1 75.0 0.2 0.1
2 0 0 79.5 3.4 3.4
0 1 1 81.4 0.2 0.1
1 1 1 90.6 0.2 0.2
2 1 0 94.3 1.8 1.5
0 2 0 101.6 1.3 1.3
2 0 1 101.8 0.4 0.2
1 2 0 109.1 1.2 1.2
2 1 1 113.7 0.4 0.2
3 0 0 119.2 3.4 3.4

Table IV. Examples of direction of propagation calculated with
the simplified (ϕxs) and the exact (ϕxe) model. Tangential modes
in room with edge ratio 1 : 1.5 (as in Figure 1). lx = 1.5ly .

(nx, ny, nz) ϕxs ϕxe

(3, 0, 0) 0◦ 0◦

(3, 1, 0) 13◦ 27◦

(2, 1, 0) 18◦ 37◦

(1, 1, 0) 34◦ 56◦

(1, 2, 0) 53◦ 72◦

(1, 3, 0) 63◦ 77◦

(0, 3, 0) 90◦ 90◦

6. Conclusion

The normal modes in a rectangular room can be associated
with the interference of plane, propagating sound waves, and thus

the concept of mean free path can be applied. This allows the
calculation of the attenuation of a room mode as a function of
the absorption coefficients of the surfaces. An equation for the
reverberation time has been derived for the normal modes in a
rectangular room with different absorption coefficients assigned
to the six surfaces.

When the absorption coefficient is the same on all surfaces,
the modal reverberation time can be compared to the Eyring
equation, which is known from statistical room acoustics. It is
shown that the averaging over a large number of modes yields
asymptotically the same mean free path as known from statisti-
cal room acoustics for 2D and 3D diffuse sound fields. However,
each room mode is associated with an individual mean free path,
and thus the modal reverberation time varies strongly from one
mode to the next.

The results have also been compared to a simplified model
for the modal reverberation time. In general the simplified model
will give too long reverberation times for the tangential and
oblique modes. The simplified model gives correct results for the
axial modes in all cases and for the other modes when the edge
ratios are close to (1:1:1).
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